
UNCLASSIFIED

A D295l701

ARMEB SERVICES TECHNICAL INFORMAION AGENCY
ARLO N HALL STATIO

ARIlNGTON 12, VIRGINIA

UNCLASSIFIED



NOTICE: When government or other drawings, speci-
fications or other data are used for any purpose
other than in connection with a definitely related
government procurement operation, the U. S.
Government thereby incurs no responsibility, nor any
obligation whatsoever; and the fact that the Govern-
ment may have formlated, furnished, or in any way
supplied the said drawings, specifications, or other
data is not to be regarded by implication or other-
wise as in any manner licensing the holder or any
other person or corporation, or conveying any rights
or permission to manufacture, use or sell any
patented invention that may in any way be related
thereto.



CONTRACT NO. NONR 839(14)

PROJECT No. NR 064.167

mmCD

C/2 OSTRESSES IN ECCENTRIC STEPWISE DISCONTINUOUS

- REINFORCING RINGS WITH TRANSITION SECTION

L, [ - -  " ..... by

,.-) ~Arnold Allentuch and Joseph Kempner

I--)

~ZNL)I VFEB 6 1963
IPutAD~

C=.
POLYTECHNIC INSTITUTE OF BROOKLYN

DEPARTMENT

of
AEROSPACE ENGINEERING

and
APPLIED MECHANICS

DECEMBER 1962

PIBAL REPORT NO. 651



Contract No. Nonr 839(14)
Project No. NR 064-167

STRESSES IN ECCENTRIC STEPWISE DISCONTINUOUS

REINFORCING RINGS WITH TRANSITION SECTION

by

Arnold Allentuch and Joseph Kempner

Polytechnic Institute of Brooklyn

Department of

Aerospace Engineering and Applied Mechanics

December 1962

PIBAL Report No. 651



ABSTRACT

The stress distribution in a ring of non-uniform cross

section under the action of a uniform radial line load is obtained.

The ring is fabricated in three segments; one segment whose cross

sectional area varies according to a power function and connects

two uniform segments. Several sets of parameters are chosen for

numerical calculations. Within these sets only the length of the

transition section changes. Thus, an appraisal of the importance

of the transition section in reducing the maximum stress is made.

The stress distribution for each length of the transition section

chosen is plotted.

The maximum bending stresses are reduced, because of the

transition section, by as much as 63%. The corresponding length

of the transition section is approximately 600.



SECTION 1. LIST OF SYMBOLS

a Outer (inner) uniform radius, Fig. 1

ah Centroidal radius of upper uniform section, Fig. 1

af Centroidal radius of transition section, Fig. 1

aH Centroidal radius of lower uniform section, Fig. 1

a Non-dimensional load parameter, Eq. (6)

Ah, AH  Cross-sectional areas of uniform sections

Af Cross-sectional area of transition section

C1...C 4  Dimensionless constants, Eq. (12)

C Dimensionless constant, Eq. (12)
f

C 3 Dimensionless constants Eq. (12)

E Young's modulus

h, H Height of two uniform sections of ring, Fig. 1

hf Height of transition section, Fig. 1

I1...15 Integrals, Eq. (37) to (41)

If Moment of inertia of transition cross section
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Ih , IH Constant moments of inertia of uniform sections

mh Non-dimensional bending moment in lighter uniform sec-

tion, Eq. (1), Fig. 2

mf Non-dimensional bending moment in transition section,

Eq. (2), Fig. 3

mH  Non-dimensional bending moment in heavier uniform sec-

tion, Eq. (3), Fig. 4

o 0 Non-dimensional bending moment at 9 = 0, Eq. (5), Fig. 2

P Radial line load distribution on ring

p Prespure external to cylinder

t Non-dimensional hoop force, Eq. (9), Fig* 2

t 0 Non-dimensional hoop force at i = 0, Eq. (5), Fig. 2

u Non-dimensional strain energy, Eq. (10)

a Ratio of centroidal to uniform outer (inner) radius for

lighter uniform section, Eq. (7)

y Ratio of centroidal to uniform outer (inner) radius for

transition section, Eq. (7)

Ratio of centroidal to uniform outer (inner) radius for

heavier uniform section, Eq. (7)
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Tf Angle locating beginning of transition section, Fig. 1

CPO Angle locating end of transition section, Fig. 1

Angular coordinate measured from crown, Fig. 2

Non-dimensional constant, Eq. (28)

Non-dimensional constant, Eq. (31)

(d()b Circumferential bending stress

6 Circumferential membrane stress

v Poisson's ratio
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2. INTRODUCTION

The general interaction problem of finding the ring and

shell stresses in hydrostatically loaded shells, reinforced by

periodically spaced frameshas been analyzed in detail in a sequence

of PIBAL reports. The initial problems were concerned with uniform

rings. In Refs. [l* and [2) the first solutions of the problem of

non-uniform rings mounted on pressurized cylinders was considered.

In both of these reports the cross sectional area of the ring was

assumed to vary smoothly.

The problem of a hydrostatically loaded shell reinforced

by non-uniform stepwise discontinuous rings was investigated in

Refs. [3], [4], and [5). In order better to distinguish between

these three solutions, they are henceforth referred to as problems

I, 2, and 3, respectively. Problems I, 2 and 3 differ only in the

geometric configuration of the reinforcing rings.

The rings in problem 1 consisted of two uniform sections

having the same mean radius and subtending equal sector angles.

Thus the effect of eccentricity of the median line of the ring was

not considered.

NNumbers in square brackets refer to the Bibliography.
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In problem 2 the rings were again fabricated of two uni-

form sections subtending equal sector angles but having different

mean radii. The effect of eccentricity was, therefore, included

and was found to be significant in the evaluation of the ring

bending stress. Several approximations to p roblem 2 were included

and evaluated [4].

Finally, the description of the rings in problem 3 con-

tained one additional p arameter. These rings conisted of two uni-

form sections having different mean radii, but the two sections

no longer subtended equal sector angles. Thus, the location of the

discontinuity, i.e., the junction of the two uniform sections, was

a parameter.

In both problems 2 and 3 the maximum bending stress in

the ring at the discontinuity was roughly one third of the corres-

ponding membrane stress. In order to investigate the reduction of

the bending stress in the ring due to a smoothly varying transition

section between the two uniform sections, the interaction problems

2 and 3 have been extended. Let us refer to this as problem 4.

As mentioned previously, several approximations to prob-

lem 2 were presented in Ref. [4]. It was concluded that, within

the limits of the parameter ranges chosen, these approximations

were also valid in problem 3 where the two sections subtended dif-

ferent central angles.
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Let us briefly analyze the basis for such a conclusion.

In problems 1, 2, and 3 the interaction load, considered as the

unknown of the problem, was expressed as a Fourier series whose

coefficients were to be determined. In problem 1 the eccentric

effect of different mean radii was absent so that the ring bending

stress was quite low, i.e., a second order effect. In problem 2,

where eccentricity was present, the bending stress was a first

order effect, and, in fact, was found to depend most heavily on

the constant term of the radial component of the interaction load

Fourier series. With this in mind the problem was solved by taking

only this constant term into consideration. In effect, the inter-

action load was assumed to be constant and radial. In Ref. [41

this approximation to problem 2, within the limit of the parameter

ranges chosen, was found to be excellent. Further investigation

indicated that the approximation described could be further sim-

plified. This was accomplished by solving for the uniform inter-

action load between an infinitely long hydrostatically loaded

cylinder and a single uniform(based on a numerical average of the

two cross sectional areas) reinforcing ring. This proved to be a

reasonable approximation, within the limits of the chosen para-

meters, to the constant term of the interaction load for problem

4. One therefore concludes that problem 4 can be reduced to find-

ing the stresses in a uniformly loaded ring composed of two uni-

form sections and connected by a smoothly varying transition
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section. The load (radial) on this ring is obtained from the

solution of the interaction problem of a single ring reinforcing

an infinitely long hydrostatically loaded shell. In particular,

the load may be obtained from Eq. (111), page 62 of Ref. [4].

In the numerical computations that follow, the length of

the transition section is the only parameter allowed to change, so

that the effect of the transition section can be readily ascertained.
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3. THE BENDING MOMENT IN THE RING

The elements of the ring shown in Figs. 2, 3 and 4 are

in static equilibrium. From a consideration of moment equilibrium,

the results are

mh = m0 - t a(l - cos g) - aa (1 - cos T)
(1)

0 ,.~ g. qf

mf = m° - t (a -y cos 9) - y ao(1 - cos 9)

(2)

9f K T K go

mH = m° - t ( - p cos a) - p ao(l - cos q)

(3)

9 0 K. g

where mh, mf, and mH, are bending moments non-dimensionalized with

respect to Young's Modulus E and to the constant radius a (see

Figs. 1 to 4) as follows:

mh = Mh/Ea
3

mf = Mf/Ea3  (4)

mH = MH/Ea
3
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The quantities m0 and to are the non-dimensional moment and forces

respectively, at cp 0

Mo  M /Ea 3

(5)

to T0 /Ea
2

a is a non-dimensionalized measure of the radial line load on0

the ring P

a = P (6)0 Ea

Finally, the following non-dimensional quantities in Eqs. (1) to

(3) are defined in the following manner (see Fig. 1):

a ah/a

= aH/a (7)

y = af/a

where ah, af, and aH are the centroidal radii of the three sec-

tions of the ring. While a and P are constants, y is a function

of the angular coordinate (p.
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The equations of force eqUiiibrium give the ho6p force

as a function of the external load

t = to Cos V - ao(l - cos 0()

where t is the non-dimensionalized hoop forte (see Fig. 1)

t = T/Ea 2  (9)

The quantities to and mo are unknown. It is coyenient

at this time to determine these unknowns by Castigliano's theorem.

The requirement is that - = 0 and au = 0 where
at0 emo 0

u is a non-dimensionAlized strain energy given by

u = -U- (10)
Se

If am refers to the radius of the median curve of the

rings I the moment of inertia of across section, and A the area of a

cross sections the strain energy of the ring is

d~~~p + S7 n2d (11)
0 a a 3a0 A Ea 2a Ea3

At this point let us define the following nondimensional

parameters$
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C1  a 4/Ih CI = a f4/I C2 = a4/IH

(12)

C3  a2/Ah C3f = a2/Af C4 = a2/AH

where the subscripts h, f, and H refer to those sections of the

ring having mean radii ahs af, and a H (see Fig. 1), respectively.

Equation (11) may be written in a manner suitable to

this particular problem. Incorporating the definitions (7) and

(12) (see Fig. 1 for definition of the position angles f and po),

the strain energy may be written as follows:

u o1 Sf 2 - m 2 d

1~ 0 h T fC 1 f d 3 2  To~ dH(3
C C

C3 2 o C3 f 2 C4 I (a-H2 d

+ E3 S f (ta - mh) di + S f - (ta - mf) d(p + -4S (to 2 dq,

The quantities (ta - mh), (ta - mr)s and (ta - mH ) can

be found from Eqs. (1)9 (2), (3), and (8) as

ta - mh = ta - mf = ta - mH = t0a - m0  (14)

From Eqs. (1), (2), (3), and (14) the following expres-

sions can be readily ascertained:

- = - o(1 - cos (15)
Ft 0

am-f= " a + T Cos (P (16)
FT
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OmH _ (7

at - - a + cos (17)

Omh (18)
8mf

8  =f 1 (19)
am

0

LM H =(20)
am o

(ta - mh) (ta - mf) a( ta - mH)

7t0  at0  at0 ()0 o 0 o 0

a(ta - mH ) 8(ta - Mf) a(ta - mH)

amo  am o0  am o0  (22)

Taking Eqs. (15) to (22) into account, application of

the requirement Ou/am 0 = 0 to Eq. (13) yields

cic f 'r1 m mR d

ac1o mhdT + S YC m d9 + pC o
f fP

-- ( o - mo)0f - (to - mo ) - dtp (23)

C4
T (toa - mo)(7c - () 0
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and application of the requirement u/8t0 yields

2CI So~f mh(l- cos ) do - S'P YCf1 mf(a- y cos c) dq

-PC 2  0 mH( - cos p) do + C3 (toa - ino) vi (24)

+ ( toa - mo) 0 o f dq + L C4(to1 - m)(n - To) = 0

0 f T 4

If Eq. (23) is multiplied by a and added to (24), the following

simplification results:

a2C1 S f cos V do + To YT2 C mf cos p do

0 qo f f
(25)

+ 2C m m cos 9 dq = 02 0o

Equations (23) and (25) may be integrated by substitu-

ting the values of m hs mrf and mH from Eqs. (1), (2), and (3).

Of course, any integral involving quantities with the subscript f

cannot be integrated until a specific function is assigned which

governs the geometry of the transition section. We leave this to

a later section.

The results of integrating Eqs. (23) and (25) at this

point wherever possible are given in the following expressions:
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+ pC2) + + b y) + S ) + ) 0

[( + + + 2 2 C3  C4
+ a(q)faC1 + b C 2 ) + (a2C 1 sin T'f - P C2 sin p) - a ((pf£; + b-)

C o C
S-i) di + S lp cos p dq]t 0 (26)

= [(a 2 fC1 + b 2 C2) - (a2C1 sin (pf - p2C2 sin po)

+ % : 2 C1  (1 - cos 9) d]a°

2 2, S (o y2C

[(a 2 C1 sin qf %d2 sin co) 0 p i co s  dq)]m 0

+ - 2a(a2C sin 2f - p2C sin to) + (a3 fC1 + 3 32b
+[aa 1 Sfqf C 2S0i2lC2)

+ (a3C sin 2T- p3C sin 2co)- a S T 2 cos qdg

4 C1  C2  2c0)ff i

(Tf if 0 1C 2  q0

1 3 3
j (a 4 + P bC2 )

- (a3Cl sin 2 pf- P 3C2 sin 2,o) + S y 3 C1  cos Vdp

" P'o y 3 C1  cos 2qd9)a0f I
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where

( - -(28)

The solutions of the simultaneous equations (26) and

(27) are

m= b C - pC 2  .1 3c cos 2dq)

2f

+ a2 (a - p)(ab sin fp + ppf sin po)c1C2

b P(a - )(a 3pfC1 + P3 bC 2 )C 2

" p(a - a)( 3 C1 sin 2cpf - C sin 2po)C 2

p 2(a -p22 2 sin o)C 2 sin 4p

+ [- a(a 2 fC1 + 02bC 2 )+ a(a 2 CI sin 9f - p2C2 sin Wo)

_ (Po 3 cos **p o °  2'Z (1 - cos q)dq
'f f -f f

- 2 (a - g)c din p0 9o y 20C co,
If

+ [- a(a2C1 sin Vf - C2 sin o) + (a3 fC 1 + p36C2 )



16.

+- (.3C1 sin 29f - p sin )
4 2 3G 2 0

f(po y3 cos2 dp] To yc 1 dcp
f

+ -o4 -o (yC + d -0wJ Y 3 c1 cos2dq,
+ 0 lp) 1 f y (Pf f

+ E Po 5q 3 C cos fpdtp + aa3csnqf 3csn(
r .C 1  sin f- 2  0 'Po)

2 ( 13 2fc1 . % 3 602 ) 3(, 3 c 1 sin 2(pf

-, 3 02 sin 2o)] 0 (yC + -f)d,

2 'f I~ f

+ C3  C -)( sin (pf - c sin o)
a p 1  3 2

C3  C4
(f L3 + b -4)(a3 fC1 + p3b

-a p ~ '' T)afC pC 2 )

C3  C 3 l 32
- Pf(L3f + 6 SA)(, 3Cl sin - 3 sin 2()

+ la((f aC1 + bPC 2 ) - (a 2C1 sin Vf - p 2C2 sin (po )

C3  C4  q0 o

+ a((f )] So 3C cos idql ao (29)
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and

t - a + ( fap(ab sin + sin ) - p)CC 2

C3 C 3C3
C3  C aa C sin V. 3C2 sin o)( + T

- (a 3C1 sin qf - p3 C2 sin p0 )

9oT2C cos 9d 0o C3

f f f If +

2 2 5o c2
(a qfC1 + bp C2 ) Sp f cos pdp

03 C4  o y3C
-+ b -) S( o C cos c dcIa o  (30)+('PfaCl + bAC2 + q f a lpf if0

where

I a3(P~ p3 P + C3 + 0 4)2 a3 fC1 + p3bC2 )(PfaC1 + b3C 2 + p 3
~1 3C3 04

+ (a3C1 sin 2 4pf - p 32 sin 2(p)(qfaC 1 + bEC2 + b Ef)

4 12 2 C P

- (a2C sin V -2 C2 sin 0 )
2

+ [ f(3 Cl + p + 1 (a 3C sin 20f - p3C2 sin 2)
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+ S Y 2C cos 2 dJ5 (YC + 3 )
q f 1ff if

- 2(a 2C1 sin f 2 C sin qo) SO r C1  cos qdcp

- [S o2C 1  cos qdl 2  (31)
f

By combining Eqs. (29), (30), and (31) with Eqs. (1), (2),

and (3) the expression for mh' mfs mH as a function of ao can be

stated. The writing of these expressions is simplified if we let

K [- o 3 C2
2 cos [ c

- (a 3 fC1 + P 3bC 2 ) - sin 4po 2C cos qpd

S C1 sin 2Wf - p3C sin 2q )

2 20

- P(a2 C1 sin gf- 2 C2 sin p0 ) sin P0]

+ 1 [(. 2 C1 sin f - P2C sin fo

A 2 0 2

+ Y2C1  cos pdt - O y3C1  cos q) S YC cos pdp
Pf if 9f If Pf f

+ I 03 fC+ 3bC) .*( 3C sin 2 cqf - P 3 c sin 2)
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+ o y 3 C cos 2 dp] 0:o y 2 C1  dq

+C3 + 4 S( C 3 f T

4- + -f)dq) 5qo T
3C cos 2 dp

* f-+ ) qf if

-2 1(2)+fC1 4 .[a32) + 3 (a 3 C1 sin 2 9f

- 3C2 sin 2o) S0 (YC +-- ) dp

" f 2) +( 3qC 1 
+ (35C + 3 + 1 (3 C sin 2 9f

3 C sin 2(p )](P f 3 + 5 4

-I (a2 c sin p, C - 2  5.o si (pc 1  cos od I (32)
2 f f

and

K2 = [ap(a - 3)(a6 sin Tf + p(pf sin po)cIC2

C3 C4
4 3 -)(a3C sin (pf - p3C2 sin vo)

" [(a33C1 sin qf- 3 C2 sin (o )

@o C3

+ 5Po y 3C1  cos pdfp) S 0o (yC + f) dcp
tpf If T f if T
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- 2(a CI sin of - g2C 2 sin (o )

+ SCPO y 2 C cos idc] SV ° Y 2 C dcpq• I£ f IPf 2 lf

(a2 fC 1 + 2C2 ) 0Y T2C cos pdp

+++ b C-) o 13C cos dpdppl (33)

+ (faC 1 + pC 2 + a (33)
f

so that

(mh/ao) = K + K2 cos (P (34)

0 K.q T. qf

(mf/a O ) = K1 + (a - y) + (y/a)K2 cos (P (35)

9f K o ( K

(mH/aO) = K1 + (a - P) + (P/a)K 2 cos q (36)

Eqs. (32) and (33) are not yet amenable to a numerical

determination. There remain within these equations terms of the

type

a S TO Y2 cos g . - s~o  3 C cos (pd
Tf if Pf f
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Because the magnitudes of a and y are very close to unity, these

two terms combine to produce a small-difference which cannot be

eliminated until the geometry of the transition section is speci-

fied. Further discussion of terms of the type mentioned above is

given in the Appendiaes.
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4. GEOMETRY OF THE RING

The ring under investigation is fabricated of three dis-

tinct sections, (Fig. 1). Because of the symmetry of the ring

with respect to a vertical axis, this discussion will refer only

to that part of the ring between ( = 0 and ( = % (see Fig. 1).

Of the three segments of the ring, two are uniform.

One uniform segment lies between q = 0 and ( = qf, and the other

between ( = (p and c = n (see Fig. I for definition of Tf and % ) .

The transition section between the two uniform sections, however,

must vary smoothly, i.e., the cross sectional areas are continuous

at the two junctions but their derivatives are not. Furthermore,

a choice of geometry for the transition section will determine

whether or not the integrals in Eqs. (32) and (33) are easily

integrable.

There are, in Eqs. (32) and (33), five integrals which

must be evaluated. These are

I = S5f yC cos cdq (37)

12 = S ro 3 1  cos2 cpd (38)
3 f f

13 = SP0 2Cd (39)
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C3
I4 = S (YCf + -) dp (40)

15 = .o, y3C1  cos (pdcp (41)

The quantities y. C f . and C3 must be stipulated as

functions of p. The choice of these functions should be based on

the following criteria: 1) the resulting shape of the transition

section and whether it is physically reasonables and 2) the degree

of complexity of the integrals (37) to (41). With these criteria

in mind the functions

(P - ,pf

(Pf -P o

r - a(6) (42)

T(f

Cif = C i (43)

and

C f "-

C3 = C3(E3 (44)
3f 4 se

where chosen. It should be realized that these functions satisfy
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the imposed continuity conditions, namely,

= cPf

Cl C1  (45)
f

C3 = C3

(P= 90
=

CI =0 2 (46)
f

C3 = C4

With the functions (42) to (44) defined, the integrals

1 to 15 may now be evaluated. Substitution of Eqs. (42) to (44)

into Eqs. (37) to (41) yields the following results:

2

2_ Cc2 + 2

(t 10 2 + ((Pf -P 20
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2 C" (a 2C1  sin (f - 2 C2  sin po ) (47)
2 2- + (Of - 0 ) 2

1 C2 3C2

c 2

1 =( a_3_C c o s 2 - 3 C c o s 2p8 1 't a 3 C 1 )

4 3 2

I (po- 2) (a3 C1 sin 2 cpf -3 C2 sin 2()I a 3 C 22 220
- (t - ) + ( f )48

4 3 (c 1 -12 2

- (4 £ - cp °) (a 3C 1 3 3C )  (48 )

tn-
3 
2

3 C2

(OPf - T
13 = 2 (a 2C1 - p2 C2 ) (49)

2
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(el - o"). (C3 - )4

14- ( C 1 - c 2 ) c( / q) C Ca (50)U P C 2 n -C 47n

) 3CI

I = - 9 2 (ac 1  COS - P3 C2  cos qo)(n a 3C 1 2  2

[ 3C2  + (of

(3f _ C)2 (a3C1  sin of 3 C2  sin o ) (51)

(n 3 C 1 )2 + (of -PO)2

3 C
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5. BENDING STRESSES

In order to obtain the bending stresses in the ring the

following procedure should be pursued:

(a) Obtain a0 by solving for the interaction load be-

tween an infinitely long hydrostatically loaded

cylinder and a single uniform reinforcing ring

(or any other approximation of Ref. [4]),

2.40(a h- 1 /2
....a0 . .. _A ) J- (52)

o1.6o (a/h) "3/ 2 , 1 3 +
.00
C I + C 3

where the uniform ring is selected such that

C 0  (C 4 C

1 = 2 C1 * C2 )

(53)

C0 
- (CC3

(b) Evaluate integrals II to 15 from Eqs. (47) to (51).

(c) Evaluate the quantity Iljali--1I. from Eqs. (AS),

(All) and (A12) (See Appendix). Evaluate the

quantity 1 J. yC,,dp - 3 from Eqs. (AS),

(All)$ (A13), (Al4), (A15). Evaluate the quantity

a - y from Eqs. (.BIO) and (ll).

(d) Utilizing the results of (a), (b) and (c), above,

evaluate Eqs, (31) to (36).
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(e) Obtain the bending stress distribution in the ring

at the radius a (the outer radius) from the rela-

tions

P Outer Radius a 1

0 K 9 <

)b c l m
P Outer Radius Y f

Sf < 9 K CPO (54)

and

GI ' 00 c2 m.
P Outer Radius 2 H

PO 1
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6. RESULTS

In order to judge the effect of the transition section

in reducing the maximum bending stress in the ring, a single set

of parameters describing the geometry of the ring was chosen.

However, many different lengths of the transition section were

considered.

The particular set of parameters which determine the

geometry of the ring (an inner ring) are

C1 = 9.983(107) C2 = 5.467(107 )

C3 = 2.750(10 3) C4 = 2.250(103 )

a = 0.9909091 P = 0.9888889

and those which determine the length of the transition section of

the rings are

TO = 900

Vf = 900 9800, 7009 600, 4509 30, 100 9 00.

The results obtained from the procedure outlined in
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section 5 are presented in the form of curves in Figs. 5 and 6

The maximum bending stress distributions are plotted in Fig. 5

for different lengths of transition section.

In addition to the stress distribution curves, two addi-

tional curves are presented in Fig. 6. They represent the reduc-

tion in the peak stresses, non-dimensionalized with respect to

the corresponding peak stress with no transition section, versus

the length of transition section. The solid curve represents the

stress reduction at the foot of the transition section (,p = Tf).

The other curve represents the stress reduction at the head of the

transition section (T = (o) .
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CONCLUSIONS

The primary purpose of the present analysis has been to

determine the reduction in the maximum bending stress caused by

introducing a smooth transition between two uniform but different

sections of a shell reinforcing ring. The non-uniform ring with-

out the discontinuity has previously been analyzed Ell. In these

previous analyses the bending stress at the discontinuity was found

to be of the order of one third the membrane stress because of the

eccentricity at the discontinuity of the centroidal radius of the

ring. In Fig. 5 the bending stresses in the ring without any

transition section correspond to the (° - Pf = 00 curve.

The effect of the length of the transition section

(0 o - C f) is indicated in both Fig. 5, where the stress distribu-

tions are plotted for the various transition section lengths, and

in Fig. 6, where the stress reduction is plotted vs. the length

of transition section. These curves show a reduction in the maxi-

mum bending stress of approximately 60% in the less rigid section

and 50% in the more rigid section of the ring. For the two uni-

form ring sections the greatestreduction in the maximum bending

stress, however, occurs at different values of po - qOf. Thus,

the maximum reduction in the bending stress occurs in the less

rigid section when To - (f m 600; the corresponding maximum stress

reduction in the more rigid section occurs when 0 - Pf = 900e
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The reduction in the bending stress reaches a maximum

value in the less rigid section because the section is becoming

shorter and effectively stiffer. This effect becomes significant

after To - Tf - 600" For o - Of > 600, the bending stress at

the foot of the transition section is greater than its correspond-

ing value for CO - Cf O 600.

The results indicate that a substantial stress reduction

can be obtained by introducing a transition section between the

two uniform sections of the ring. They further indicate that

there is an optimum length of transition section which is suggested

by a maximum reduction in the bending stress.
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APPENDIX

Equations (32) and (33) contain expressions of the type

II[ai 1 - 15) = liso 2C pos (pdq - Ils T 3C cos cdp (Al)
f if T

and

I5T rC1  dq -I113 T S0 r3C cos pdq][T dr p

q'fIf f I ~ f C1

T S r 2 Cl cos pdqp][S(P Y2C dip] (A2)
P :f I f if

Because the magnitudes of a and y are close to unity, Eqs. (Al) and

(A2) represent differences of nearly equal quantities. These dif-

ferences, which could lead to the loss of significant figures in a

numerical analysis, are eliminated by appropriate expansions.

If use Is made of Eqs. (37) and (41), Eq. (Al) becomes

aI1 2 1 1 5

2
aC

2

g- :o)[' 2C' (a C1 cos f- 2C2 cos 4o)

-2 0
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3

3C

C 21

( n -) 2 2+ ( a - 2

C 20__ _ _ _ _ _(a3C 1 sin q'f -P C2 sin o3 (Ala)

( n -C2 ) 2 + (q'f - q) 2

It is evident that the expressions which will produce

the small differences are those within the square brackets. Con-

sider then the term

U 2CI

2C2

2 (a 2C1 cos Pf - C 2 C2 cos )

(t n 2_ 2 9f - (o)

302
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3
C

3 .. (a 3C1  cos (f 3 C2 cos fo)  (A3)3C" 2 2

( La ) + ( f - 'P)

Expression (A3) may be rewritten

an a3 C (n a 3C1 2  2 2C113C-- 1 (-? C--") + (]'f 2C2 ?~

02 2 0 (a2 C cos Pf

a3C12 2 a2C1 2 +2( n 3- + (Mf_- o) ( -2 U -9 ) an --

C2 C2  C 2

- 2C2 cos 0)a - (a3C Co - 3C2 cos (P) (A3a)

Let 2

2 2

r (A4)a 3C 1

3C 2

Now expression (A3a) becomes upon substitution of (A4)
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('Pf - j2
n3. + 3

(,tn aC 1 2

3 r (a3C I COS (Pf

SC + -Po)2 r 12 + ((1P( (oos
( 2 tn a(3C) 1

P 3 C, 2

- 1P2 C2 cos 1o) - (a3C cos -P C2 cos o)l (A5)

It can be seen that if a and p are quantities whose value are

close to unity, r1 is a quantity of order of magnitude unity,

and can be written

rI = I + 1  (A6)

where e, is small compared to unity. Expression (A5) can again

be rewritten as

3

a C(

P3C2  2 1 + 3

a 1 1(
2 + 1) (ac 1 cos

; 3 C ) + ( tf -2 2
PC2  1

(t.. 3C3p)C2
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-c t32 C2 cos q 0 ) - (C 3CI cos - p3 C2 cos (Po)l (A7)

Let

G = 1 + - (A9)'Q3C1 2

(tn I -)2

P 3C 2

and from expression (A7) let us expand

I + E1  e1(2 + e 1 ) e1 (2 + e 1)

1+ el(2 + e 1 ) = ( + el )1 G + 2

G

(2 + .... J (A9)
G G3

After multiplying,(A9) becomes

2 + 2 + e e (2+ )  2 ,e2

1 1 + ei( -1 G ) [ - -1 G
1 (2 + GS G G G 2

G (A9a)

In order to evaluate el let us write Eq. (A6) and (A4) in the fol-

lowing form and expand:
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CLC1t n -'---

= ( 1 + e1) - 2 2 SL
tn 2--. + Ui + 0

2C - a 2C -

C2

In.. n o -?,n c

)21 - - ( )3 + .. (Al 0)n2 + 28 2C3
a C 01 aC

c 02 2C2  C2

e = - [ I - 2 " + 2 - (All)
a2C1  22C

2 C2  2 C2  7C 2

If we now substitute (A9) into (A7) and (A7) into(Ala), the fol-

lowing expression results:

5 [(i I) fI 1 (l - )[1
I1 1  5 Go3C1

3 C
2

6(2 + ,) e21 (2 + el) 2  2 C
G + G 2 - . . . ( C o s O £
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2 2 2 cos (P) - 2(, - P)C 2  cos coI

i1((f  TO) 2 ae 1 (2 + F, ei(2 + e11(q - .. G El G

G( n 
) 2G

+ e;1(2 + ..) - - p2 (a - t)C 2 sin TO] (A12)

where e, is given by (All).

The expression (A2) may be treated in a similar manner

to obtain

I5S T0f d1  -f = - G Ul a[E 2 - el(2 + El)

G G 21
£l(2 +e 1 )  £2(2 + e1 )

2 2
1 - G + -2.. ](a2C1 cos q'f-P C2 cosino)(

a 2 C- 2C2) + aO(a - p)(a Cos Tf - P cos 9o)ClC23

- ((Pf 9 0 )3  e (2 + e1) E1 (
2 + c1 ):3 -e G HC1 G

LaC 2 aCa3CCa

G (,,n _. .) 2 , 2p 02 PC2
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+ (2 2 - *(a 2 C1 sin q¢f - p2 C2 sin o)(a 2 C1 - P 2 C)

+ a[p(a - P)(a sin - p sin T,)C1C23 (A13)

where F_ is given by (All) and

F2- ( c)2 - (A14)

PC 2  PC 2  PC 2

t3 (t1 [ - (+ ) ... (A15)

tn 1

PC 2 P'C 2 TC2
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APPENDIX B

Equation (35) contains the term (a - y). If a and y

are quantities of the order of magnitude of unity, the calculation

of this term involves 4 differedce of nearly equal quantities.

The resulting loss of significant figures can be eliminated by

suitable expansions. If use is made of Eq. (42), the quantity

(i -y) can be written as follows:

Cf- P f

a - y = FI - ( ) (B1)

Since c and are of order unity, we may write

P - f P - f
CP 1 + e p f - ( B 2 )

= (I+e4)

where

e < < 1(B3)

If the binomial expansion is used to express the right-hand side

of Eq. (B2) in powers of e4 s the following results:
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T" TO Tf + 9 - 9 f 9f, 1 L 2
I + 6 1TPf go 4 pf - go 9pt - o 2-oE

+- 11C - E + ... ( 4)9f g o T TO g o3

In order to find an expression for e4 let us write [see Eq. (7)]

a( =h (B5)

This can be restated in terms of the thicknesses h and H of the

two uniform sectors of the ring. Thuss

a (h2) =2(aH) 2a~h)- I(B6)a /2 2( a/h) 2(a/H) -I1

Further algebraic manipulation leads to

a_1 - (h42&a(B7

1-(H/2a (B7)

If the denominator is expanded, we obtain

(I a) 2 -1 = 1 + (. H-) + _U)2 + H_)3 + * (B8)
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Combining Eqs. (B7) and (BB) gives

a + 6 h co  H)k-I I2(B9)
--=1+I( h kP a a) 7 - (B9)2 a k=l 2

Howeverj if Eq. (B9) is compared with Eq. (B2), we obtain the

following expression:

1 - h Hk-i I (BlO)
a a k 2k ' l

Finally, from Eqs. (BI) and (B4) we can write the ecpres-

sion for(a - in the following form:

f- 4[l + (9f - 2

2
P - Pf f - 9f e+ 1) 1) _ -2) '4

3C - (PfC - 9Pf CP - P f e4 + -] B lcp+ qPf - l)( - 2)( P - 3) 24

(f-o ff -oo

Thereforesfrom Eqs. (BlO) and (BlI) we can calculate(a - y)without

the loss of significant figures due to differences of nearly equal

quantities.
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